Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
ACS Appl Mater Interfaces ; 16(2): 2583-2592, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38173080

RESUMO

Organic piezomaterials have attracted much attention because of their easy processing, lightweight, and mechanic flexibility properties. Developing new smart organic piezomaterials is highly required for new-generation electronic applications. Here, we found a novel organic piezomaterial of organic charge-transfer complex (CTC) consisting of dibenzcarbazole analogue (DBCz) and tetracyanoquinodimethane (TCNQ) in the molecular-level heterojunction stacking mode. The DBCz-TCNQ complex exhibited ferroelectric properties (the saturated polarization of ∼1.23 µC/cm2) at room temperature with a low coercive field. The noncentrosymmetric alignment (Pc space group) led to a spontaneous polarization of this architecture and thus was the origin of the piezoelectric behavior. Lateral piezoelectric nanogenerators (PENGs) based on the thermal evaporated CTC thin-film exhibited significant energy conversion behavior under mechanical agitation with a calculated piezoelectric coefficient (d31) of ∼33 pC/N. Furthermore, such a binary CTC thin-film constructed single-electrode PENG could show steady-state sensing performance to external stimuli as this flexible wearable device precisely detected physiological signals (e.g., finger bending, blink movement, carotid artery, etc.) with a self-powered supply. This work provides that the polar CTCs can act as efficient piezomaterials for flexible energy harvesting, conversion, and wearable sensing devices with a self-powered supply, enabling great potential in healthcare, motion detection, human-machine interfaces, etc.

2.
ACS Macro Lett ; 12(9): 1201-1206, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37610013

RESUMO

In this work, Fe3O4 nanoparticles anchored with dopamine molecules were developed via bioinspired iron-catechol coordination interactions, and the dopamine-modified Fe3O4 surface was linked to the matrix through strong interfacial interactions between the nanoparticles and the epoxy vitrimer. Results showed that the typical dynamic parameters of vitrimer could be readily adjusted in the epoxy vitrimer composites. These findings demonstrate that it is efficient to adjust the dynamic properties of vitrimers by introducing the metal-coordination bonds into epoxy vitrimer networks. The synergy of metal-catechol coordination and transesterification enriched the mechanism of dynamic regulation. In addition, the epoxy vitrimer composites were responsive to temperature and near-infrared light. The scratch could be successfully healed with 1 min on the surface of vitrimer composites under NIR irradiation even for the 1% addition of Fe3O4 nanoparticles. This approach shows potential to be generally applicable to different types of metal-coordination systems.

3.
Lancet Infect Dis ; 23(11): 1302-1312, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37475115

RESUMO

BACKGROUND: Monkeypox virus has recently infected more than 88 000 people, raising concerns about our preparedness against this emerging viral pathogen. Licensed and approved for mpox, the JYNNEOS vaccine has fewer side-effects than previous smallpox vaccines and has shown immunogenicity against monkeypox in animal models. This study aims to elucidate human immune responses to JYNNEOS vaccination compared with mpox-induced immunity. METHODS: Peripheral blood mononuclear cells and sera were obtained from ten individuals vaccinated with one or two doses of JYNNEOS and six individuals diagnosed with monkeypox virus infection. Samples were obtained from seven individuals before vaccination to serve as a baseline. We examined the polyclonal serum (ELISA) and single B-cell (heavy chain gene and transcriptome data) antibody repertoires and T-cell responses (activation-induced marker and intracellular cytokine staining assays) induced by the JYNNEOS vaccine versus monkeypox virus infection. FINDINGS: All participants were men between the ages of 21 and 60 years, except for one woman in the group of mpox-convalescent individuals, and none had previous orthopoxvirus exposure. All mpox cases were mild. Vaccinee samples were collected 6-33 days after the first dose and 5-40 days after the second dose. Mpox-convalescent samples were collected 20-102 days after infection. In vaccine recipients, gene-level plasmablast and antibody responses were negligible and sera displayed moderate binding to recombinant orthopoxviral proteins (A29L, A35R, E8L, A30L, A27L, A33R, B18R, and L1R) and native proteins from the 2022 monkeypox outbreak strain. By contrast, recent monkeypox virus infection (within 20-102 days) induced robust serum antibody responses to monkeypox virus proteins and to native monkeypox virus proteins from a viral isolate obtained during the 2022 outbreak. JYNNEOS vaccine recipients presented robust orthopoxviral CD4+ and CD8+ T-cell responses. INTERPRETATION: Infection with monkeypox virus resulted in robust B-cell and T-cell responses, whereas immunisation with JYNNEOS elicited more robust T-cell responses. These data can help to inform vaccine design and policies for preventing mpox in humans. FUNDING: National Cancer Institute (National Institutes of Health), National Institute of Allergy and Infectious Diseases (National Institutes of Health), and Icahn School of Medicine.


Assuntos
Mpox , Vacina Antivariólica , Vacinas , Estados Unidos , Animais , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Mpox/prevenção & controle , Leucócitos Mononucleares , Vacinação , Monkeypox virus
4.
medRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945651

RESUMO

Background: Mpox (formerly known as monkeypox) outbreaks outside endemic areas peaked in July 2022, infecting > 85,000 people and raising concerns about our preparedness against this emerging viral pathogen. Licensed and approved for mpox, the JYNNEOS vaccine has fewer side effects than previous smallpox vaccines and demonstrated efficacy against mpox infection in humans. Comparing JYNNEOS vaccine- and mpox-induced immunity is imperative to evaluate JYNNEOS' immunogenicity and inform vaccine administration and design. Methods: We examined the polyclonal serum (ELISA) and single B cell (heavy chain gene and transcriptome data) antibody repertoires and T cells (AIM and ICS assays) induced by the JYNNEOS vaccine as well as mpox infection. Findings: Gene-level plasmablast and antibody responses were negligible and JYNNEOS vaccinee sera displayed minimal binding to recombinant mpox proteins and native proteins from the 2022 outbreak strain. In contrast, recent mpox infection (within 20-102 days) induced robust serum antibody responses to A29L, A35R, A33R, B18R, and A30L, and to native mpox proteins, compared to vaccinees. JYNNEOS vaccine recipients presented comparable CD4 and CD8 T cell responses against orthopox peptides to those observed after mpox infection. Interpretation: JYNNEOS immunization does not elicit a robust B cell response, and its immunogenicity may be mediated by T cells. Funding: Research reported in this publication was supported, in part, by the National Cancer Institute of the National Institutes of Health under Award Number U54CA267776, U19AI168631(VS), as well as institutional funds from the Icahn School of Medicine.

5.
Chem Sci ; 14(8): 2091-2096, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36845927

RESUMO

Supramolecular chirality is essential for the development of functional materials. In this study, we report the synthesis of twisted nanobelts based on charge-transfer (CT) complexes using self-assembly cocrystallization starting from asymmetric components. An asymmetric donor, DBCz, and a typical acceptor, tetracyanoquinodimethane, were used to construct a chiral crystal architecture. An asymmetric alignment of the donor molecules induced polar ±(102) facets that, accompanied with free-standing growth, resulted in a twisting along the b-axis due to the electrostatic repulsive interactions. Meanwhile, the alternately oriented ±(001) side-facets were responsible for the propensity of the helixes to be right-handed. Addition of a dopant significantly enhanced the twisting probability by reducing the surface tension and adhesion influence, even switching the chirality preference of the helixes. In addition, we could further extend the synthetic route to other CT systems for formation of other chiral micro/nanostructures. Our study offers a novel design approach for chiral organic micro/nanostructures for applications in optically active systems, micro/nano-mechanical systems and biosensing.

6.
Cell Rep ; 42(1): 112014, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36681898

RESUMO

The SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike. Most IgGs that do not neutralize Omicron bind either entirely monovalently or have some (22%-50%) monovalent occupancy. Cleavage of bivalent-binding IgGs to Fabs abolishes neutralization and binding affinity, with disproportionate loss of activity against Omicron pseudovirus and spike. These results suggest that VoC-resistant antibodies overcome mutagenic substitution via avidity. Hence, vaccine strategies targeting future SARS-CoV-2 variants should consider epitope display with spacing and organization identical to trimeric spike.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Etnicidade , Epitopos , Anticorpos Antivirais , Anticorpos Neutralizantes , Testes de Neutralização
7.
Clin Cancer Res ; 29(2): 472-487, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36322002

RESUMO

PURPOSE: PAX-fusion negative rhabdomyosarcoma (FN RMS) is driven by alterations in the RAS/MAP kinase pathway and is partially responsive to MEK inhibition. Overexpression of IGF1R and its ligands is also observed in FN RMS. Preclinical and clinical studies have suggested that IGF1R is itself an important target in FN RMS. Our previous studies revealed preclinical efficacy of the MEK1/2 inhibitor, trametinib, and an IGF1R inhibitor, BMS-754807, but this combination was not pursued clinically due to intolerability in preclinical murine models. Here, we sought to identify a combination of an MEK1/2 inhibitor and IGF1R inhibitor, which would be tolerated in murine models and effective in both cell line and patient-derived xenograft models of RAS-mutant FN RMS. EXPERIMENTAL DESIGN: Using proliferation and apoptosis assays, we studied the factorial effects of trametinib and ganitumab (AMG 479), a mAb with specificity for human and murine IGF1R, in a panel of RAS-mutant FN RMS cell lines. The molecular mechanism of the observed synergy was determined using conventional and capillary immunoassays. The efficacy and tolerability of trametinib/ganitumab was assessed using a panel of RAS-mutated cell-line and patient-derived RMS xenograft models. RESULTS: Treatment with trametinib and ganitumab resulted in synergistic cellular growth inhibition in all cell lines tested and inhibition of tumor growth in four of six models of RAS-mutant RMS. The combination had little effect on body weight and did not produce thrombocytopenia, neutropenia, or hyperinsulinemia in tumor-bearing SCID beige mice. Mechanistically, ganitumab treatment prevented the phosphorylation of AKT induced by MEK inhibition alone. Therapeutic response to the combination was observed in models without a mutation in the PI3K/PTEN axis. CONCLUSIONS: We demonstrate that combined trametinib and ganitumab is effective in a genomically diverse panel of RAS-mutated FN RMS preclinical models. Our data also show that the trametinib/ganitumab combination likely has a favorable tolerability profile. These data support testing this combination in a phase I/II clinical trial for pediatric patients with relapsed or refractory RAS-mutated FN RMS.


Assuntos
Rabdomiossarcoma , Humanos , Animais , Camundongos , Criança , Linhagem Celular Tumoral , Camundongos SCID , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno
8.
Chemistry ; 29(10): e202202915, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36404599

RESUMO

Organic donor-acceptor complexes as new organic semiconductor class have attracted wide attention, due to their potential applications in functional optoelectronics. Herein, we present two new charge transfer cocrystals of di-cyanodiazafluorene -perylene (DCPE) and di-cyanodiazaflfluorene-pyrene (DCPY) through a rational cocrystal-engineering strategy. Although they are both 1 : 1 mixed stacking cocrystals with similar chemical structures, the DCPE cocrystal possesses a non-centrosymmetric space group and narrower band gap compared to DCPY cocrystal, because of the non-covalent bonding variation. The electrostatic potential accumulated in the lateral facets leads to highly twisted DCPE nanobelts, and the small band gap causes near infrared fluorescence. Meanwhile, the DCPY crystals with centrosymmetric space groups and weaker intermolecular interactions exhibited an untwisted morphology and red emission. This study will be helpful for the design and understanding of functional cocrystal materials that can be used in flexible micro/nano-mechanics, mechanical energy, and optical devices.

10.
ChemSusChem ; 15(19): e202200933, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853838

RESUMO

Inadequate mass transportation of semipermeable membranes causes poor osmotic energy conversion from salinity-gradient. Here, the lamellar graphene oxide membranes (GOMs) constructed with numerous fusiform-like nanochannels, that are pre-filled with negatively charged polyanion electrolytes, to both enhance the ion permeability and ion selectivity of the membrane for energy harvest from the salinty gradient, were developed. The as-prepared membrane achieved the maximum output power density of ∼4.94 W m-2 under a 50 fold salinity gradient, which is 3.5 fold higher than that of pristine GOM. The enhancement could be ascribed to the synergistic impact of the expanded nanochannels and the enhanced space charge density. Via feeding with the artificial salinity water and monovalent cation electrolytes, the system could realise the power output up to 14.7 W m-2 and 34.1 W m-2 , respectively. Overall, this material design strategy could provide an alternative concept to effectively enhance ion transport of other two-dimensional (2D) membranes for specific purposes.


Assuntos
Membranas Artificiais , Salinidade , Cátions Monovalentes , Osmose , Água
11.
Chemistry ; 28(39): e202201176, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35509241

RESUMO

High performance solution processable n-type organic semiconductor is an essential element to realize low-cost, all organic and flexible composite logic circuits. In the design of n-type semiconducting materials, tuning the LUMO level of compounds is a key point. As a strong electron withdrawing unit, the introduction of chlorine atom into the chemical structure can increase the electron affinity of the material and reduce the LUMO energy level. Here, a series chlorine substituted N-heteroacene analogues of 6,7,8,9-tetrachloro-4,11-bis(4-((2-ethylhexyl)oxy)phenyl)-[1,2,5]thiadiazolo[3,4-b]phenazine (O4Cl), 6,7,8,9-tetrachloro-4,11-bis(4-((2-ethylhexyl)thio)phenyl)-[1,2,5]thiadiazolo[3,4-b]phenazine (S4Cl), 1,2,3,4,8,9,10,11-octachloro-6,13-bis(4-((2-ethylhexyl)oxy)phenyl)quinoxalino[2,3-b]phenazine (8Cl) and 12Cl have been synthesized and characterized. Solution-processed organic field-effect transistors (OFETs) based on these four compounds exhibit good electron mobilities of 0.04 cm2  V-1 s-1 , 0.01 cm2  V-1 s-1 , 2×10-3  cm2  V-1 s-1 and 3×10-3  cm2  V-1 s-1 , respectively, under ambient conditions. The results suggest that these chlorine substituted π-conjugated N-heteroacene analogues are promising n-type semiconductors in OFET applications.

12.
Chem Commun (Camb) ; 57(78): 10031-10034, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34505585

RESUMO

The development of synthetic helical structures from achiral molecules and stimulus-responsive shape transformations are vital for biomimetics and mechanical actuators. A stimulus regarded as the force to induce chirality modulation plays a significant role in the helical supramolecular structure design through symmetry breaking. Herein, we synthesized a metastable complex Form 1 crystal composed of pyrene and (4,8-bis(dicyanomethylene)-4,8-dihydrobenzo[1,2-b:4,5-b']-dithiophen-e) DTTCNQ components with a torsional backbone by C-H⋯N hydrogen bonds via a quick cooling method. The helix motion kinetics of Form 1 depends on the intrinsic factor (crystal thickness) and external stimuli (polar solvents). The self-assembled helical microstructures grow into needle-like crystals in liquid media via an untwistingprocess. Furthermore, they undergo predictable deformation of untwisting or breaking under a stimulus-responsive strain-relaxing phase transformation. This work illustrates a new approach in the mediated formation of helical morphologies from achiral binary supramolecules and dynamic motion, which is vital for biomimetics and mechanical actuators.

13.
Immunotherapy ; 13(7): 571-585, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33781095

RESUMO

Aim: This study explored new immunoadjuvants with stronger immune activity to enhance therapeutic effects against leukemia. Materials & methods: Whole blood and bone marrow of acute myeloid leukemia (AML) patients and healthy volunteers were collected. Isolated mononuclear cells were treated with two newly designed CpG oligodeoxynucleotides, CpG sequence 13 and 19, and known CpG oligodeoxynucleotides and analyzed via flow cytometry. Results: CpG Seq 13 and 19 possess strong immune activation and enhance the proliferation, degranulation and cytotoxicity of T cells. They also inhibit AML cell proliferation. When CpG Seq 13/19 are combined with anti-OX40 antibodies, the cytotoxicity of T cells on AML cells are further enhanced. Conclusion: CpG Seq 13 and 19 are strong immune adjuvant candidates for AML treatment.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Oligodesoxirribonucleotídeos/uso terapêutico , Adolescente , Adulto , Idoso , Criança , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto Jovem
14.
Mol Cancer Ther ; 19(10): 2221-2232, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747423

RESUMO

PI3K/AKT/mTOR pathway hyperactivation is frequent in T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL). To model inhibition of mTOR, pre-T-cell lymphoblastic leukemia/lymphoma (pre-T LBL) tumor development was monitored in mice with T lymphocyte-specific, constitutively active AKT (Lck-MyrAkt2) that were either crossed to mTOR knockdown (KD) mice or treated with the mTOR inhibitor everolimus. Lck-MyrAkt2;mTOR KD mice lived significantly longer than Lck-MyrAkt2;mTOR wild-type (WT) mice, although both groups ultimately developed thymic pre-T LBL. An increase in survival was also observed when Lck-MyrAkt2;mTOR WT mice were treated for 8 weeks with everolimus. The transcriptional profiles of WT and KD thymic lymphomas were compared, and Ingenuity Pathway Upstream Regulator Analysis of differentially expressed genes in tumors from mTOR WT versus KD mice identified let-7 and miR-21 as potential regulatory genes. mTOR KD mice had higher levels of let-7a and miR-21 than mTOR WT mice, and rapamycin induced their expression in mTOR WT cells. CDK6 was one of the most downregulated targets of both let-7 and miR21 in mTOR KD tumors. CDK6 overexpression and decreased expression of let-7 in mTOR KD cells rescued a G1 arrest phenotype. Combined mTOR (rapamycin) and CDK4/6 (palbociclib) inhibition decreased tumor size and proliferation in tumor flank transplants, increased survival in an intravenous transplant model of disseminated leukemia compared with single agent treatment, and cooperatively decreased cell viability in human T-ALL/LBL cell lines. Thus, mTOR KD mice provide a model to explore drug combinations synergizing with mTOR inhibitors and can be used to identify downstream targets of inhibition.


Assuntos
Quinase 6 Dependente de Ciclina/metabolismo , Perfilação da Expressão Gênica/métodos , Serina-Treonina Quinases TOR/metabolismo , Animais , Carcinogênese , Regulação para Baixo , Camundongos , Camundongos Transgênicos
15.
Int J Biol Sci ; 16(12): 2063-2071, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32549754

RESUMO

Krüppel-like factor 10 (KLF10) has been identified as an important regulator in carcinogenesis and cancer progression. However, the role of KLF10 in multiply myeloma (MM) development and progression remains unknown. In present study, we found that KLF10 mRNA and protein were down-regulated in MM tissues and cell lines. Notably, KLF10 inhibited cell proliferation, cell cycle progression and promoted apoptosis in vitro and in vivo. Furthermore, we confirmed that KLF10 inhibited ß-catenin nuclear translocation and inhibited PTTG1 transcription. PTTG1 knockdown could mimic the biological effects of KLF10. Moreover, we demonstrated that KLF10 expression was regulated by miR-106b-5p. In MM tissues, miR-106b-5p has an inverse correlation with KLF10 expression. Conclusively, our results demonstrated that KLF10 functions as a tumor suppressor in regulating tumor growth of MM under regulation of miR-106b-5p, supporting its potential therapeutic target for MM.


Assuntos
Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/metabolismo , Mieloma Múltiplo/metabolismo , Securina/metabolismo , Animais , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Nus , MicroRNAs/genética , Mieloma Múltiplo/genética , Neoplasias Experimentais , Securina/genética , Via de Sinalização Wnt
16.
Gastroenterology ; 158(8): 2250-2265.e20, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32060001

RESUMO

BACKGROUND AND AIMS: Glypican 3 (GPC3) is an oncofetal antigen involved in Wnt-dependent cell proliferation that is highly expressed in hepatocellular carcinoma (HCC). We investigated whether the functions of chimeric antigen receptors (CARs) that target GPC3 are affected by their antibody-binding properties. METHODS: We collected peripheral blood mononuclear cells from healthy donors and patients with HCC and used them to create CAR T cells, based on the humanized YP7 (hYP7) and HN3 antibodies, which have high affinities for the C-lobe and N-lobe of GPC3, respectively. NOD/SCID/IL-2Rgcnull (NSG) mice were given intraperitoneal injections of luciferase-expressing (Luc) Hep3B or HepG2 cells and after xenograft tumors formed, mice were given injections of saline or untransduced T cells (mock control), or CAR (HN3) T cells or CAR (hYP7) T cells. In other NOD/SCID/IL-2Rgcnull (NSG) mice, HepG2-Luc or Hep3B-Luc cells were injected into liver, and after orthotopic tumors formed, mice were given 1 injection of CAR (hYP7) T cells or CD19 CAR T cells (control). We developed droplet digital polymerase chain reaction and genome sequencing methods to analyze persistent CAR T cells in mice. RESULTS: Injections of CAR (hYP7) T cells eliminated tumors in 66% of mice by week 3, whereas CAR (HN3) T cells did not reduce tumor burden. Mice given CAR (hYP7) T cells remained tumor free after re-challenge with additional Hep3B cells. The CAR T cells induced perforin- and granzyme-mediated apoptosis and reduced levels of active ß-catenin in HCC cells. Mice injected with CAR (hYP7) T cells had persistent expansion of T cells and subsets of polyfunctional CAR T cells via antigen-induced selection. These T cells were observed in the tumor microenvironment and spleen for up to 7 weeks after CAR T-cell administration. Integration sites in pre-infusion CAR (HN3) and CAR (hYP7) T cells were randomly distributed, whereas integration into NUPL1 was detected in 3.9% of CAR (hYP7) T cells 5 weeks after injection into tumor-bearing mice and 18.1% of CAR (hYP7) T cells at week 7. There was no common site of integration in CAR (HN3) or CD19 CAR T cells from tumor-bearing mice. CONCLUSIONS: In mice with xenograft or orthoptic liver tumors, CAR (hYP7) T cells eliminate GPC3-positive HCC cells, possibly by inducing perforin- and granzyme-mediated apoptosis or reducing Wnt signaling in tumor cells. GPC3-targeted CAR T cells might be developed for treatment of patients with HCC.


Assuntos
Carcinoma Hepatocelular/terapia , Glipicanas/metabolismo , Imunoterapia Adotiva , Neoplasias Hepáticas/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/transplante , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Glipicanas/genética , Glipicanas/imunologia , Granzimas/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Perforina/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Tumoral , Microambiente Tumoral , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Retina ; 40(1): 66-74, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30312258

RESUMO

PURPOSE: To evaluate the effect of internal limiting membrane peeling and air tamponade for idiopathic macular hole, and explore reasons and interventions for persistent holes. METHODS: One hundred and thirty-five eyes with Stage III and IV idiopathic macular hole that underwent 23-gauge vitrectomy, internal limiting membrane peeling, and air tamponade were reviewed. Eyes with persistent holes underwent a second surgery. Outcome-related factors and interventions treating persistent holes were discussed. RESULTS: The initial closure (Type I) rate was 89.63% (121/135). Eyes that underwent the second surgery all obtained final closure (Type I). Diameter of macular hole was significantly smaller (P < 0.001) and duration of symptoms was significantly shorter (P = 0.017) in initially closed cases than in unclosed ones. Binary logistic regression indicated large diameter of macular hole as a risk factor for initial closure (P = 0.004). A cutoff value of 677 µm was provided by receiver operating characteristic curve to predict initial closure (P < 0.001). Best-corrected visual acuity of all individuals improved significantly (P < 0.001) from 20/154 to 20/40 (mean follow-up: 4.5 months). CONCLUSION: Internal limiting membrane peeling and air tamponade for idiopathic macular hole provide satisfactory morphologic and functional outcomes. Large diameter of macular hole and long duration of symptoms are risk factors for initial closure. Proper second surgery can obtain satisfactory outcomes for persistent holes.


Assuntos
Ar , Membrana Basal/cirurgia , Tamponamento Interno , Membrana Epirretiniana/cirurgia , Perfurações Retinianas/cirurgia , Vitrectomia , Idoso , Área Sob a Curva , Feminino , Humanos , Implante de Lente Intraocular , Masculino , Pessoa de Meia-Idade , Facoemulsificação , Curva ROC , Retina/fisiopatologia , Perfurações Retinianas/classificação , Perfurações Retinianas/fisiopatologia , Estudos Retrospectivos , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia
18.
Clin Cancer Res ; 26(3): 643-656, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31582516

RESUMO

PURPOSE: TGFßs are overexpressed in many advanced cancers and promote cancer progression through mechanisms that include suppression of immunosurveillance. Multiple strategies to antagonize the TGFß pathway are in early-phase oncology trials. However, TGFßs also have tumor-suppressive activities early in tumorigenesis, and the extent to which these might be retained in advanced disease has not been fully explored. EXPERIMENTAL DESIGN: A panel of 12 immunocompetent mouse allograft models of metastatic breast cancer was tested for the effect of neutralizing anti-TGFß antibodies on lung metastatic burden. Extensive correlative biology analyses were performed to assess potential predictive biomarkers and probe underlying mechanisms. RESULTS: Heterogeneous responses to anti-TGFß treatment were observed, with 5 of 12 models (42%) showing suppression of metastasis, 4 of 12 (33%) showing no response, and 3 of 12 (25%) showing an undesirable stimulation (up to 9-fold) of metastasis. Inhibition of metastasis was immune-dependent, whereas stimulation of metastasis was immune-independent and targeted the tumor cell compartment, potentially affecting the cancer stem cell. Thus, the integrated outcome of TGFß antagonism depends on a complex balance between enhancing effective antitumor immunity and disrupting persistent tumor-suppressive effects of TGFß on the tumor cell. Applying transcriptomic signatures derived from treatment-naïve mouse primary tumors to human breast cancer datasets suggested that patients with breast cancer with high-grade, estrogen receptor-negative disease are most likely to benefit from anti-TGFß therapy. CONCLUSIONS: Contrary to dogma, tumor-suppressive responses to TGFß are retained in some advanced metastatic tumors. Safe deployment of TGFß antagonists in the clinic will require good predictive biomarkers.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo , Resultado do Tratamento
19.
Mol Biol Cell ; 30(16): 1961-1973, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31318315

RESUMO

Contact guidance refers to the ability of cells to sense the geometrical features of the microenvironment and respond by changing their shape and adopting the appropriate orientation. Inhibition and ablation of nonmuscle myosin 2 (NM2) paralogues have demonstrated their importance for contact guidance. However, the specific roles of the NM2 paralogues have not been systematically studied. In this work we use micropatterned substrates to examine the roles of NM2A and NM2B and to elucidate the relationship of the microenvironment, actomyosin, and microtubules in contact guidance. We show that contact guidance is preserved following loss of NM2B and that expression of NM2A alone is sufficient to establish an appropriate orientation of the cells. Loss of NM2B and overexpression of NM2A result in a prominent cell polarization that is found to be linked to the increased alignment of microtubules with the actomyosin scaffold. Suppression of actomyosin with blebbistatin reduces cell polarity on a flat surface, but not on a surface with contact guidance cues. This indicates that the lost microtubule-actomyosin interactions are compensated for by microtubule-microenvironment interactions, which are sufficient to establish cell polarity through contact guidance.


Assuntos
Comunicação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Actomiosina/metabolismo , Animais , Polaridade Celular , Forma Celular , Fibroblastos/metabolismo , Camundongos , Microtúbulos/metabolismo , Fibras de Estresse/metabolismo
20.
Mol Cancer Res ; 17(8): 1759-1773, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31164412

RESUMO

Cancer development requires a favorable tissue microenvironment. By deleting Myd88 in keratinocytes or specific bone marrow subpopulations in oncogenic RAS-mediated skin carcinogenesis, we show that IL17 from infiltrating T cells and IκBζ signaling in keratinocytes are essential to produce a permissive microenvironment and tumor formation. Both normal and RAS-transformed keratinocytes respond to tumor promoters by activating canonical NF-κB and IκBζ signaling, releasing specific cytokines and chemokines that attract Th17 cells through MyD88-dependent signaling in T cells. The release of IL17 into the microenvironment elevates IκBζ in normal and RAS-transformed keratinocytes. Activation of IκBζ signaling is required for the expression of specific promoting factors induced by IL17 in normal keratinocytes and constitutively expressed in RAS-initiated keratinocytes. Deletion of Nfkbiz in keratinocytes impairs RAS-mediated benign tumor formation. Transcriptional profiling and gene set enrichment analysis of IκBζ-deficient RAS-initiated keratinocytes indicate that IκBζ signaling is common for RAS transformation of multiple epithelial cancers. Probing The Cancer Genome Atlas datasets using this transcriptional profile indicates that reduction of IκBζ signaling during cancer progression associates with poor prognosis in RAS-driven human cancers. IMPLICATIONS: The paradox that elevation of IκBζ and stimulation of IκBζ signaling through tumor extrinsic factors is required for RAS-mediated benign tumor formation while relative IκBζ expression is reduced in advanced cancers with poor prognosis implies that tumor cells switch from microenvironmental dependency early in carcinogenesis to cell-autonomous pathways during cancer progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/patologia , Interleucina-17/metabolismo , Fator 88 de Diferenciação Mieloide/fisiologia , Neoplasias Cutâneas/patologia , Linfócitos T/metabolismo , Proteínas ras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-17/genética , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Receptores Tipo I de Interleucina-1/fisiologia , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Linfócitos T/patologia , Microambiente Tumoral , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...